G equation - definizione. Che cos'è G equation
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è G equation - definizione


G equation         
In Combustion, G equation is a scalar G(\mathbf{x},t) field equation which describes the instantaneous flame position, introduced by Forman A. Williams in 1985Williams, F.
Klein–Gordon equation         
RELATIVISTIC WAVE EQUATION IN QUANTUM MECHANICS
Klein-Gordon; Klein-Gordon Equation; Klein-gordon equation; Klein-Gordon field; Klein-gordon field; Klein gordon equation; Klein-Gordon equation; Klein–Gordon; Klein-Gordan equation; Klein Gordon; Nonlinear Klein–Gordon equation; Klein–Gordon field; Non-linear Klein–Gordon equation; Klein–Fock–Gordon equation; Klein–Gordon–Fock equation; Klein-Fock-Gordon equation; Klein-Gordon-Fock equation; Non-linear Klein-Gordon equation; Nonlinear Klein-Gordon equation
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant.
Schrödinger equation         
  • [[Erwin Schrödinger]]
  • 1-dimensional potential energy box (or infinite potential well)
  • spring]], oscillates back and forth. (C–H) are six solutions to the Schrödinger Equation for this situation. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the [[wave function]]. [[Stationary state]]s, or energy eigenstates, which are solutions to the time-independent Schrödinger equation, are shown in C, D, E, F, but not G or H.
  • harmonic oscillator]]. Left: The real part (blue) and imaginary part (red) of the wave function. Right: The [[probability distribution]] of finding the particle with this wave function at a given position. The top two rows are examples of '''[[stationary state]]s''', which correspond to [[standing wave]]s. The bottom row is an example of a state which is ''not'' a stationary state. The right column illustrates why stationary states are called "stationary".
  • 1=''V'' = 0}}. In other words, this corresponds to a particle traveling freely through empty space.
PARTIAL DIFFERENTIAL EQUATION DESCRIBING HOW THE QUANTUM STATE OF A NON-RELATIVISTIC PHYSICAL SYSTEM CHANGES WITH TIME
Schrodingers equation; Schroedinger's equation; Schroedinger equation; Schrödinger Wave Equation; Schrodinger's equation; Schrödinger wave equation; Schrödinger's equation; Schrödinger-equation; Schrödinger Equation; Schrödinger's wave equation; TDSE; Time-independent Schrödinger equation; Time-independent Schrodinger equation; Time-independent schrödinger equation; Time-independent schrodinger equation; Schrodinger Equation; Shrodinger equation; Shrodinger's equation; Schroedinger Equation; Sherdinger's equation; Shredinger's equation; Sherdinger equation; Shredinger equation; Schrodinger's wave equation; Schrodinger`s equation; Schrodiner`s equation; Erwin Schrodinger's wave model; Time independent Schrödinger equation; Schroedinger wave equation; Time-independent Schroedinger equation; Schrodinger Wave Equation; Schroedinger Wave Equation; Schroedinger's wave equation; Time independent Schroedinger equation; Schrodinger-equation; Time independent Schrodinger equation; Time-independent schroedinger equation; Schroedinger-equation; Schrodinger wave equation; Schrodinger equation; TISE; Schrodinger operator; Schrödinger’s equation; Schrodinger's Wave Equation; Schrödinger's Wave Equation; Schrodinger's Equation; Schrödinger's Equation; Schrodinger model; Schrödinger model; Non-Relativistic Schrodinger Wave Equation; Time-dependent Schrödinger equation; Schrodinger’s equation; Schrodenger equation
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject.